Asked  7 Months ago    Answers:  5   Viewed   37 times

I have 3 CSV files. Each has the first column as the (string) names of people, while all the other columns in each dataframe are attributes of that person.

How can I "join" together all three CSV documents to create a single CSV with each row having all the attributes for each unique value of the person's string name?

The join() function in pandas specifies that I need a multiindex, but I'm confused about what a hierarchical indexing scheme has to do with making a join based on a single index.



Assumed imports:

import pandas as pd

John Galt's answer is basically a reduce operation. If I have more than a handful of dataframes, I'd put them in a list like this (generated via list comprehensions or loops or whatnot):

dfs = [df0, df1, df2, dfN]

Assuming they have some common column, like name in your example, I'd do the following:

df_final = reduce(lambda left,right: pd.merge(left,right,on='name'), dfs)

That way, your code should work with whatever number of dataframes you want to merge.

Edit August 1, 2016: For those using Python 3: reduce has been moved into functools. So to use this function, you'll first need to import that module:

from functools import reduce
Tuesday, June 1, 2021
answered 7 Months ago

This post aims to give readers a primer on SQL-flavored merging with pandas, how to use it, and when not to use it.

In particular, here's what this post will go through:

  • The basics - types of joins (LEFT, RIGHT, OUTER, INNER)

    • merging with different column names
    • merging with multiple columns
    • avoiding duplicate merge key column in output

What this post (and other posts by me on this thread) will not go through:

  • Performance-related discussions and timings (for now). Mostly notable mentions of better alternatives, wherever appropriate.
  • Handling suffixes, removing extra columns, renaming outputs, and other specific use cases. There are other (read: better) posts that deal with that, so figure it out!

Most examples default to INNER JOIN operations while demonstrating various features, unless otherwise specified.

Furthermore, all the DataFrames here can be copied and replicated so you can play with them. Also, see this post on how to read DataFrames from your clipboard.

Lastly, all visual representation of JOIN operations have been hand-drawn using Google Drawings. Inspiration from here.

Enough Talk, just show me how to use merge!

Setup & Basics

left = pd.DataFrame({'key': ['A', 'B', 'C', 'D'], 'value': np.random.randn(4)})    
right = pd.DataFrame({'key': ['B', 'D', 'E', 'F'], 'value': np.random.randn(4)})

  key     value
0   A  1.764052
1   B  0.400157
2   C  0.978738
3   D  2.240893


  key     value
0   B  1.867558
1   D -0.977278
2   E  0.950088
3   F -0.151357

For the sake of simplicity, the key column has the same name (for now).

An INNER JOIN is represented by

This, along with the forthcoming figures all follow this convention:

  • blue indicates rows that are present in the merge result
  • red indicates rows that are excluded from the result (i.e., removed)
  • green indicates missing values that are replaced with NaNs in the result

To perform an INNER JOIN, call merge on the left DataFrame, specifying the right DataFrame and the join key (at the very least) as arguments.

left.merge(right, on='key')
# Or, if you want to be explicit
# left.merge(right, on='key', how='inner')

  key   value_x   value_y
0   B  0.400157  1.867558
1   D  2.240893 -0.977278

This returns only rows from left and right which share a common key (in this example, "B" and "D).

A LEFT OUTER JOIN, or LEFT JOIN is represented by

This can be performed by specifying how='left'.

left.merge(right, on='key', how='left')

  key   value_x   value_y
0   A  1.764052       NaN
1   B  0.400157  1.867558
2   C  0.978738       NaN
3   D  2.240893 -0.977278

Carefully note the placement of NaNs here. If you specify how='left', then only keys from left are used, and missing data from right is replaced by NaN.

And similarly, for a RIGHT OUTER JOIN, or RIGHT JOIN which is...

...specify how='right':

left.merge(right, on='key', how='right')

  key   value_x   value_y
0   B  0.400157  1.867558
1   D  2.240893 -0.977278
2   E       NaN  0.950088
3   F       NaN -0.151357

Here, keys from right are used, and missing data from left is replaced by NaN.

Finally, for the FULL OUTER JOIN, given by

specify how='outer'.

left.merge(right, on='key', how='outer')

  key   value_x   value_y
0   A  1.764052       NaN
1   B  0.400157  1.867558
2   C  0.978738       NaN
3   D  2.240893 -0.977278
4   E       NaN  0.950088
5   F       NaN -0.151357

This uses the keys from both frames, and NaNs are inserted for missing rows in both.

The documentation summarizes these various merges nicely:

enter image description here

Other JOINs - LEFT-Excluding, RIGHT-Excluding, and FULL-Excluding/ANTI JOINs

If you need LEFT-Excluding JOINs and RIGHT-Excluding JOINs in two steps.

For LEFT-Excluding JOIN, represented as

Start by performing a LEFT OUTER JOIN and then filtering (excluding!) rows coming from left only,

(left.merge(right, on='key', how='left', indicator=True)
     .query('_merge == "left_only"')
     .drop('_merge', 1))

  key   value_x  value_y
0   A  1.764052      NaN
2   C  0.978738      NaN


left.merge(right, on='key', how='left', indicator=True)

  key   value_x   value_y     _merge
0   A  1.764052       NaN  left_only
1   B  0.400157  1.867558       both
2   C  0.978738       NaN  left_only
3   D  2.240893 -0.977278       both

And similarly, for a RIGHT-Excluding JOIN,

(left.merge(right, on='key', how='right', indicator=True)
     .query('_merge == "right_only"')
     .drop('_merge', 1))

  key  value_x   value_y
2   E      NaN  0.950088
3   F      NaN -0.151357

Lastly, if you are required to do a merge that only retains keys from the left or right, but not both (IOW, performing an ANTI-JOIN),

You can do this in similar fashion—

(left.merge(right, on='key', how='outer', indicator=True)
     .query('_merge != "both"')
     .drop('_merge', 1))

  key   value_x   value_y
0   A  1.764052       NaN
2   C  0.978738       NaN
4   E       NaN  0.950088
5   F       NaN -0.151357

Different names for key columns

If the key columns are named differently—for example, left has keyLeft, and right has keyRight instead of key—then you will have to specify left_on and right_on as arguments instead of on:

left2 = left.rename({'key':'keyLeft'}, axis=1)
right2 = right.rename({'key':'keyRight'}, axis=1)

  keyLeft     value
0       A  1.764052
1       B  0.400157
2       C  0.978738
3       D  2.240893


  keyRight     value
0        B  1.867558
1        D -0.977278
2        E  0.950088
3        F -0.151357
left2.merge(right2, left_on='keyLeft', right_on='keyRight', how='inner')

  keyLeft   value_x keyRight   value_y
0       B  0.400157        B  1.867558
1       D  2.240893        D -0.977278

Avoiding duplicate key column in output

When merging on keyLeft from left and keyRight from right, if you only want either of the keyLeft or keyRight (but not both) in the output, you can start by setting the index as a preliminary step.

left3 = left2.set_index('keyLeft')
left3.merge(right2, left_index=True, right_on='keyRight')
    value_x keyRight   value_y
0  0.400157        B  1.867558
1  2.240893        D -0.977278

Contrast this with the output of the command just before (that is, the output of left2.merge(right2, left_on='keyLeft', right_on='keyRight', how='inner')), you'll notice keyLeft is missing. You can figure out what column to keep based on which frame's index is set as the key. This may matter when, say, performing some OUTER JOIN operation.

Merging only a single column from one of the DataFrames

For example, consider

right3 = right.assign(newcol=np.arange(len(right)))
  key     value  newcol
0   B  1.867558       0
1   D -0.977278       1
2   E  0.950088       2
3   F -0.151357       3

If you are required to merge only "new_val" (without any of the other columns), you can usually just subset columns before merging:

left.merge(right3[['key', 'newcol']], on='key')

  key     value  newcol
0   B  0.400157       0
1   D  2.240893       1

If you're doing a LEFT OUTER JOIN, a more performant solution would involve map:

# left['newcol'] = left['key'].map(right3.set_index('key')['newcol']))

  key     value  newcol
0   A  1.764052     NaN
1   B  0.400157     0.0
2   C  0.978738     NaN
3   D  2.240893     1.0

As mentioned, this is similar to, but faster than

left.merge(right3[['key', 'newcol']], on='key', how='left')

  key     value  newcol
0   A  1.764052     NaN
1   B  0.400157     0.0
2   C  0.978738     NaN
3   D  2.240893     1.0

Merging on multiple columns

To join on more than one column, specify a list for on (or left_on and right_on, as appropriate).

left.merge(right, on=['key1', 'key2'] ...)

Or, in the event the names are different,

left.merge(right, left_on=['lkey1', 'lkey2'], right_on=['rkey1', 'rkey2'])

Other useful merge* operations and functions

  • Merging a DataFrame with Series on index: See this answer.

  • Besides merge, DataFrame.update and DataFrame.combine_first are also used in certain cases to update one DataFrame with another.

  • pd.merge_ordered is a useful function for ordered JOINs.

  • pd.merge_asof (read: merge_asOf) is useful for approximate joins.

This section only covers the very basics, and is designed to only whet your appetite. For more examples and cases, see the documentation on merge, join, and concat as well as the links to the function specs.

Continue Reading

Jump to other topics in Pandas Merging 101 to continue learning:

  • Merging basics - basic types of joins *

  • Index-based joins

  • Generalizing to multiple DataFrames

  • Cross join

* you are here

Tuesday, June 1, 2021
answered 7 Months ago
In [65]: pd.concat(data, axis=1)
                     AvgStatisticData  AvgStatisticData  AvgStatisticData  AvgStatisticData
2012-10-14 14:00:00         39.335996         47.854712         54.171233         65.813114
2012-10-14 15:00:00         40.210110         55.041512         48.718387         71.397868
2012-10-14 16:00:00         48.282816         55.488026         59.978616         76.213973
2012-10-14 17:00:00         40.593039         51.688483         50.984514         72.729002
2012-10-14 18:00:00         40.952014         57.916672         54.924745         73.196415
Tuesday, August 3, 2021
answered 5 Months ago

It is not clear to me what you exactly want to do when a y element is equal to zero... anyway the key point in this answer is "use np.logical_{and,not,or,xor} functions".

I think that the following, albeit formulated differently from your example, does what you want, but if I'm wrong you should be able to combine different tests to achieve what you want,

x = np.where(np.logical_or(x*y>0, y==0), x, 0)
Tuesday, August 17, 2021
Rick Sladkey
answered 4 Months ago

try using left_on and right_index to do the merging, like:

m = pd.merge(dfA, dfB, right_index = True, left_on='value')
Sunday, August 29, 2021
answered 4 Months ago
Only authorized users can answer the question. Please sign in first, or register a free account.
Not the answer you're looking for? Browse other questions tagged :